Transverse-momentum-dependent parton distributions (TMDs)

Alessandro Bacchetta
University of Pavia and INFN

On behalf of an exceptional TMD community

On behalf of an exceptional TMD community

Steady progress over last years

Steady progress over last years

-Theory

Steady progress over last years

- Theory
- Experiment

Steady progress over last years

- Theory
- Experiment
-Phenomenology

Intro

$$
x f_{1}^{u}(x)
$$

Standard collinear PDF

Standard collinear PDF

$$
x f_{1}^{u}\left(x, p_{T}^{2}\right)
$$

Transverse momentum distribution (TMD)

Sister distributions

Generalized parton
distribution functions

QCDSF/UKQCD, PRL 98 (07)
Coordinate space

Sister distributions

Generalized parton distribution functions

QCDSF/UKQCD, PRL 98 (07)
Coordinate space

TMDs

Based on A.B., Conti, Guagnelli, Radici, arXiv:1003.1328

Momentum space

This is a picture of an orchestra in coordinate space.

This is a picture of an orchestra in coordinate space.

Adding momentum we get the full experience...

This is a picture of an orchestra in coordinate space.

Adding momentum we get the full experience...

TMDs: multidimensional structure of the nucleon in momentum space

8 leading-twist TMDs

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

8 leading-twist TMDs

helicity quark pol.

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

8 leading-twist TMDs

helicity quark pol.

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

8 leading-twist TMDs

helicity quark pol.

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

8 leading-twist TMDs

helicity quark pol.

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

8 leading-twist TMDs

helicity quark pol.

Sivers Twist-2 TMDs pretzelosity transversity

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

8 leading-twist TMDs

helicity quark pol.

Sivers Twist-2 TMDs
pretzelosity transversity
worm-gear

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

What have we learned aboutTMDs

TMD factorization

Collins, Soper, NPB I93 (8I) Ji, Ma, Yuan, PRD 7 I (05)

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right] \\
& \qquad=H\left(Q^{2}, \mu^{2}, \zeta, \zeta_{h}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& \quad x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
\end{aligned}
$$

TMD factorization

Collins, Soper, NPB I93 (8I) Ji, Ma, Yuan, PRD 7 I (05)

$$
F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right]
$$

$$
=H\left(Q^{2}, \mu^{2}, \zeta, \zeta_{h}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right)
$$

$$
x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
$$

New concepts

New concepts

- Generalized factorization

New concepts

- Generalized factorization
- Soft factors

New concepts

- Generalized factorization
- Soft factors
- Rapidity divergences

New concepts

- Generalized factorization
- Soft factors
- Rapidity divergences
- Nondiagonal evolution equations

Unpolarized distribution

Unpolarized distribution

Unpolarized distribution

Unpolarized TMD width

Unpolarized TMD width

$$
\sqrt{\left\langle p_{T}^{2}\right\rangle} \approx 0.4-0.8 \mathrm{GeV}
$$

depending on kinematics

Unpolarized TMD width

$$
\sqrt{\left\langle p_{T}^{2}\right\rangle} \approx 0.4-0.8 \mathrm{GeV}
$$

depending on kinematics

Impact on high-energy physics

P. Nadolsky, hep-ph/04I2I46

TMDs and determination of W mass

TABLE XVI. Systematic uncertainties in units of MeV on the combination of the six fits in the electron and muon channels. Each uncertainty has been estimated by removing its covariance and repeating the sixfold combination.

Source	Uncertainty (MeV)
Lepton scale	23.1
Lepton resolution	4.4
Lepton efficiency	1.7
Lepton tower removal	6.3
Recoil energy scale	8.3
Recoil energy resolution	9.6
Backgrounds	6.4
PDFs	12.6
W boson p_{T}	3.9
Photon radiation	11.6

$$
\begin{equation*}
m_{W}=80.398 \pm 0.025 \mathrm{GeV} \tag{53}
\end{equation*}
$$

Transversity

talk by Xiaodong Jiang

Transversity

talk by Xiaodong Jiang

Transversity

Successful use of TMD observables to extract transversity
 talk by Xiaodong Jiang

Extraction vs models

|-7 models, 8 extraction talk by Alexei Prokudin

Extraction vs models

|-7 models, 8 extraction talk by Alexei Prokudin

Sivers function

Sivers function

Sivers function

The Sivers function is nonzero.

Sivers function

The Sivers function is nonzero. Indication of the presence of quark orbital angular momentum.

data: HERMES and COMPASS, fit:Anselmino et al., EPJA39(09) talk by Alexei Prokudin

data: HERMES and COMPASS, fit:Anselmino et al., EPJA39(09) talk by Alexei Prokudin

Transverse spin dependence

Transverse spin dependence

Transverse spin dependence

What we still don't know aboutTMDs

What's the precise shape

D’Alesio, Murgia, PRD70 (04)

What's the precise shape

D’Alesio, Murgia, PRD70 (04)

What's the precise shape

A good amount of data can be described using Gaussians independent of flavor, spin, and often x and Q^{2}
see nice discussion in P. Schweitzer, T.Teckentrup, A. Metz, PRD8I(IO)

66 Things should be made as simple as possible...

66 Things should be made as simple as possible, but not any simpler

Can flavor influence TMDs?

TMDs may be flavor dependent

TMDs may be flavor dependent

Jefferson Lab

Jefferson Lab

Indication of a nontrivial flavor dependence

Can TMDs be non-Gaussian?

Non-Gaussian TMDs

Non-Gaussian TMDs

Shape of atomic orbitals

H2p

p-wave

s-wave

Shape of atomic orbitals

Momentum (\AA^{-1})

Vos, McCarthy, Am. J. Phys. 65 (97), 544

Orbital angular momentum and shape of TMDs

$f_{1}\left(x, p_{T}^{2}\right)=\left|\psi_{s-\text { wave }}\right|^{2}+\left|\psi_{p-\text { wave }}\right|^{2}+\ldots$

Orbital angular momentum and shape of TMDs

$$
f_{1}\left(x, p_{T}^{2}\right)=\left|\psi_{s-\text { wave }}\right|^{2}+\left|\psi_{p-\text { wave }}\right|^{2}+\ldots
$$

At low $p_{T}\left|\psi_{p-\text { wave }}\right|^{2} \sim p_{T}^{2}$

Does spin influence TMDs?

Longitudinal spin dependence

longitudinal parallel spins

Longitudinal spin dependence

longitudinal parallel spins
long. antiparallel spins

Jefferson Lab

Non-flat behavior means that polarization affects TMDs

Non-flat behavior means that polarization affects TMDs Non-monotonic behavior may be a sign of orbital angular momentum

Transverse-longitudinal spin

Transverse-longitudinal spin

Reminiscent of
a worm gear

Transverse-longitudinal spin

Worm gears on the lattice

Talk by Bernhard Musch

Worm gear signal in experiments

Hall A, talk by Jin Huang

Worm gear signal in experiments

CLAS, arXiv: I 003.4549
talk by Patrizia Rossi

Thursday, 3 June 2010

We have achieved a lot.

We have achieved a lot. We have a lot to achieve.

Coming up: TMD2010 workshop (June 2I-25) www.ect.it

Transverse Momentum Distributions (TMD 2010)
Trento, June 21-25, 2010

