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Sister distributions

QCDSF/UKQCD, PRL 98 (07)
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distribution functions TMDs
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What have we learned
about TMDs ?
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TMD factorization
Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)
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TMD factorization
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Figure 6. The CSS resummed cross sections in Z boson production at the Tevatron. The curves are

computed in several models for the CSS form factor W (b) at large impact parameters (b > 1 GeV−1):

(a) W (b) at large b is given by extrapolation of its perturbative part from b < 1 GeV−1 (solid); (b) the

same as (a), multiplied by a Gaussian smearing term e−0.8b
2

(short-dashed); (c) a phenomenologicalBLNY

form, which shows good agreement with the Run-1 Z data (dot-dashed) [24]; (d) an updated Ladinsky-

Yuan form, which shows worse agreement with the Run-1 Z data (long-dashed) [24]. Note that the

extrapolationmodel (curves (a) and (b)) must include a Gaussian smearing term e−gb
2

,with g∼ 0.8 GeV2,
in order to be close to the BLNY form (and, hence, to the data).

of the perturbation series cures the instability of the theory at q2T # Q2 by summing

the troublesome qT logarithms through all orders of !s into a soft (Sudakov) form

factor [30]. The validity of such re-arrangement is proved by a factorization theorem

in the method by Collins, Soper, and Sterman (CSS) [31]. The resummation in vec-
tor boson production is a special case of a more general problem, and essentially the

same method applies to hadroproduction in e+e− scattering [32], and semi-inclusive

hadroproduction in deep-inelastic scattering [33, 34, 35]. The CSS formalism automat-

ically preserves the fundamental symmetries (renormalization- and gauge-group invari-

ance, energy-momentum conservation) and is convenient in practice. The qT resumma-

tion can be extended to include effects of particle thresholds [36], heavy quark masses

[37], and hadronic spin [38, 39]. RESBOS [23, 24] is a Monte-Carlo integrator program

that quickly and accurately evaluates the CSS resummed cross sections in Drell-Yan-like

processes.

All small-qT logarithms arise in the CSS method from the form factorW (b) in im-
pact parameter (b) space, composed of the Sudakov exponential and b-dependent parton
distribution functions. The resummed qT distribution is obtained by taking the Fourier-

Bessel transform ofW (b) into qT space (realized numerically in RESBOS). The alterna-
tive approaches evaluate the Fourier-Bessel transform of the leading logarithmic towers

analytically, with the goal to improve transition from the resummed cross section to the

finite-order cross section at intermediate qT [40, 41]. The integration over all b in the

Fourier-Bessel transform introduces sensitivity to the nonperturbative QCD dynamics

P. Nadolsky, hep-ph/0412146

Impact on high-energy physics
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mW ¼ 80:398" 0:025 GeV: (53)

Our measurement reduces the world uncertainty to 31 parts
in 105, and further constrains the properties of the Higgs
boson and other new particles coupling to the W and Z
bosons. Within the context of the standard model, fits made
to high-energy precision electroweak data in 2006 gave
mH ¼ 85þ39

$28 GeV, with mH < 166 GeV at the 95% con-
fidence level [19]. The values used for the top quark andW
boson masses in these fits were mt ¼ ð171:4" 2:1Þ GeV
and mW ¼ ð80:392" 0:029Þ GeV, respectively. Updat-
ing these fits with the most recent world-average values
of mt ¼ ð170:9" 1:8Þ GeV and mW ¼ ð80:398"
0:025Þ GeV [Eq. (53)], and using the methods and data
described in [19,78], gives mH ¼ 76þ33

$24 GeV, with mH <
144 GeV at the 95% confidence level. The effect of the
new mW value alone is to reduce the predicted value of the
standard model Higgs boson mass by 6 GeV.

We anticipate a significant reduction in the uncertainty
of future CDF mW measurements using larger available
data sets. The dominant uncertainties on this measurement
are due toW boson statistics and to the lepton energy scale
calibration (Table XVI), and will be reduced with in-
creased statistics in the W boson and calibration data
samples.
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APPENDIX: ELECTRON AND PHOTON
INTERACTIONS

The simulation of electrons and photons (Sec. III B 2)
uses the Bethe-Heitler differential cross sections for elec-
tron bremsstrahlung and photon conversion [49]. Defining
y as the final-state photon energy divided by the initial-
state electron energy, the bremsstrahlung cross section is

d!

dy
¼ 4"EMr

2
e

!"
4

3y
$ 4

3
þ y

#
 1ðZÞ þ

"
1

y
$ 1

#
 2ðZÞ
9

$
;

(A1)

where

 1ðZÞ ¼ Z2½lnð184:15Z$1=3Þ $ f( þ Z lnð1194Z$2=3Þ;
 2ðZÞ ¼ Z2 þ Z;

f ¼ a2½ð1þ a2Þ$1 þ 0:20 206$ 0:0369a2

þ 0:0083a4 $ 0:002a6(; (A2)

and a ¼ "EMZ. We define a material’s radiation length X0

according to [49]

X$1
0 ) 4"EMr

2
eNA# 1ðZÞ=A; (A3)

where # is the density of the material. In terms of the
radiation length, the cross section is

d!

dy
¼ A

NAX0#

!"
4

3
þ C

#"
1

y
$ 1

#
þ y

$
; (A4)

where

TABLE XV. Differences of mW in the pT fits between
positively and negatively charged leptons, leptons in the upper
and lower halves of the detector, and early and late data. The
units are MeV.

Fit difference W ! $% W ! e%

mWðlþÞ $mWðl$Þ 286" 152 257" 117
mWð&l > 0Þ $mWð&l < 0Þ 0" 133 116" 117
mW (Mar. 2002–Apr. 2003)–
mW (Apr. 2003–Sept. 2003)

75" 135 $107" 117

TABLE XVI. Systematic uncertainties in units of MeV on the
combination of the six fits in the electron and muon channels.
Each uncertainty has been estimated by removing its covariance
and repeating the sixfold combination.

Source Uncertainty (MeV)

Lepton scale 23.1
Lepton resolution 4.4
Lepton efficiency 1.7
Lepton tower removal 6.3
Recoil energy scale 8.3
Recoil energy resolution 9.6
Backgrounds 6.4
PDFs 12.6
W boson pT 3.9
Photon radiation 11.6

T. AALTONEN et al. PHYSICAL REVIEW D 77, 112001 (2008)

112001-46

CDF collaboration, PRD77 (08)

TMDs and determination 
of  W mass
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FIG. 3: The results obtained from our simultaneous fit of the SIDIS Asin (φh−φS)
UT Sivers asymmetries (solid lines) are compared

with HERMES experimental data [10] for pion and kaon production (left and right panel respectively). The shaded area
corresponds to the theoretical uncertainty of the parameters, see Appendix A for further details. For completeness, we also
show the K0

S asymmetry, not measured at HERMES, which is the result of a computation based on our extracted Sivers
function and the assumed fragmentation functions of Eq. (16).
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FIG. 4: The results obtained from our fit (solid lines) are compared with the COMPASS measurements of Asin (φh−φS)
UT for

pion (left panel) and kaon (right panel) production [11] off a deuteron target. The shaded area corresponds to the theoretical
uncertainty of the parameters, as explained in Appendix A. The π0 asymmetry, not measured at COMPASS, is the result of
a computation based on our extracted Sivers functions. Also the K0

S asymmetry, although compared with data [12], is not a
best fit, but the result of our computation, using the assumed fragmentation functions of Eq. (16).

obtain χ2 = 1.20 per data point for K+ production at HERMES [10], while for pions we have χ2 = 0.94 per data
point, and a total χ2

dof = 1.00.
The quality of our results is shown in Figs. 3 and 4 where our best fits to the SSA is compared with the experimental

data from Refs. [10] and [11]: the SSAs are plotted as a function of one variable at a time, either z or x or PT , while an
integration over the other variables has been performed consistently with the cuts of the corresponding experiment.
The shaded area in Figs. 3 and 4 corresponds to 95.45% Confidence Level (CL) and is determined according to the
procedure described in Appendix A.

Notice that in Fig. 4 we also show the results for π0 at COMPASS, for which no data is so far available, computed

using our extracted Sivers functions as given in Table I. Similarly we have computed Asin(φh−φS)
UT for K0

S production
at HERMES and COMPASS and show them respectively in Fig. 3 and 4. As the K0

S is an equal mixture of K0 = ds̄
and K̄0 = d̄s, we have assumed isospin invariance, writing the K0

S FFs in terms of the K+ ones – which are taken
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FIG. 4: The results obtained from our fit (solid lines) are compared with the COMPASS measurements of Asin (φh−φS)
UT for

pion (left panel) and kaon (right panel) production [11] off a deuteron target. The shaded area corresponds to the theoretical
uncertainty of the parameters, as explained in Appendix A. The π0 asymmetry, not measured at COMPASS, is the result of
a computation based on our extracted Sivers functions. Also the K0

S asymmetry, although compared with data [12], is not a
best fit, but the result of our computation, using the assumed fragmentation functions of Eq. (16).

obtain χ2 = 1.20 per data point for K+ production at HERMES [10], while for pions we have χ2 = 0.94 per data
point, and a total χ2

dof = 1.00.
The quality of our results is shown in Figs. 3 and 4 where our best fits to the SSA is compared with the experimental

data from Refs. [10] and [11]: the SSAs are plotted as a function of one variable at a time, either z or x or PT , while an
integration over the other variables has been performed consistently with the cuts of the corresponding experiment.
The shaded area in Figs. 3 and 4 corresponds to 95.45% Confidence Level (CL) and is determined according to the
procedure described in Appendix A.

Notice that in Fig. 4 we also show the results for π0 at COMPASS, for which no data is so far available, computed

using our extracted Sivers functions as given in Table I. Similarly we have computed Asin(φh−φS)
UT for K0

S production
at HERMES and COMPASS and show them respectively in Fig. 3 and 4. As the K0

S is an equal mixture of K0 = ds̄
and K̄0 = d̄s, we have assumed isospin invariance, writing the K0

S FFs in terms of the K+ ones – which are taken
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IV. PREDICTIONS FOR FORTHCOMING EXPERIMENTS

Using the Sivers functions determined through our fit, we can give predictions for other transverse single spin

asymmetries Asin(φh−φS)
UT which will be measured in the near future. Fig. 8 shows the results we obtain for the

COMPASS experiment operating with a hydrogen target, adopting the same experimental cuts which were used for
the deuterium target (Eq. (71) of Ref. [1]).

Forthcoming measurements at the energies of 6 and 12 GeV are going to be performed at JLab, on proton, neutron
and deuteron transversely polarized targets. The obtained data will be important for several reasons; they will
cover a kinematical region corresponding to large values of x, a region which is so far unexplored from other SIDIS
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FIG. 4: The P 2
t dependence of differential cross-sections per nucleus for π± production on hydrogen

(H) and deuterium (D) targets at 〈z〉=0.55 and 〈x〉=0.32. The solid lines show the result of the

seven-parameter fit described in the text. The error bars are statistical only. Systematic errors

are typically 4% (relative, see text for details). The average value of cos(φ) varies with P 2
t (see

Table 1.

(see Fig. 1). We assume further that sea quarks are negligible (typical global fits show less

than 10% contributions at x = 0.3). To make the problem tractable, we take only the

leading order terms in (kt/Q), which was shown to be a reasonable approximation for small

to moderate Pt in Ref. [6]. The simple model can then be written as:

σπ+
p = C[4c1(Pt)e−b+u P 2

t + (d/u)(D−/D+)c2(Pt)e−b−
d

P 2
t ]

σπ−
p = C[4(D−/D+)c3(Pt)e−b−u P 2

t + (d/u)c4(Pt)e−b+
d

P 2
t ]

σπ+
n = C[4(d/u)c4(Pt)e−b+

d
P 2

t + (D−/D+)c3(Pt)e−b−u P 2
t ]

σπ−
n = C[4(d/u)(D−/D+)c2(Pt)e−b−

d
P 2

t + c1(Pt)e−b+u P 2
t ]

(4)

where C is an arbitrary normalization factor, and the inverse of the total widths for each

9

 Hall C, Mkrtchyan et al., PLB665 (08)
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Shape of atomic orbitals

this context it is interesting to note an early discussion by
Coulson,12 who emphasized the potential of momentum in-
formation for studying chemical bonding. At that time par-
tially momentum-integrated and energy-summed information
on molecular momentum densities could be obtained from
Compton scattering.2,3

The prototype for the discussion of the chemical bond is
the hydrogen molecule. The distance between the nuclei in a
hydrogen molecule is 1.4 a.u. !0.74 Å". This is considerably
smaller than the spatial extension of two atomic hydrogen 1s
orbitals !see Fig. 2", each of which has an rms charge radius
of 1.73 a.u. The orbitals of two undisturbed hydrogen atoms
at the molecular distance would therefore overlap.
The chemical bond is described by molecular orbitals that

are SCF solutions of the molecular Schrödinger equation.
The most stable solution is one that minimizes the total en-
ergy of the system. There are different types of molecular
orbitals, each with a different symmetry property. In a sim-
plified description we understand them in terms of linear
combinations of atomic orbitals. For two identical atoms,
indistinguishability of the electrons limits the possible com-
binations of atomic orbitals to two, one symmetric and one

antisymmetric. The antisymmetric combination has a nodal
plane equidistant from the nuclei. Nonidentical atoms result
in analogous molecular orbitals, but the nodal surface in the
analogue of the antisymmetric orbital is deformed and dis-
placed. The electron density is the squared magnitude of the
molecular orbital.
The key to understanding the energies of different types of

molecular orbitals in the atomic-orbital picture, and therefore
their bonding properties, is the density of negative charge
resulting from the interference of the overlapping atomic or-
bitals. This is called the interference density.13 The interfer-
ence of s orbitals is constructive in the symmetric case, de-
structive in the antisymmetric case.
We first compare the symmetric combination of two 1s

orbitals with two bare 1s orbitals at the molecular distance.
Constructive interference results in charge density being re-
distributed from the region near the nuclei to the overlap
region between the nuclei. The density changes are of two
kinds.
First, the volume occupied by the electrons becomes larger

and the density smoother. This results in a significant lower-
ing of the kinetic energy, since lower absolute momenta re-

Fig. 2. Three-dimensional plots of the probability density !#(x ,y ,0) !2 in coordinate space and the probability density !$(px ,py,0) !2 in momentum space are
shown for the 1s , 2s , and 2py orbitals of the hydrogen atom. Note that in momentum and coordinate space the orbitals have the same symmetry. Also note
that the more extended the orbital is in coordinate space, the more confined in momentum space. The node for the 2s orbital results in a density minimum
which is visible as a circle centered at the origin in both the coordinate- and momentum-space pictures.
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sult from larger volumes and smaller orbital gradients. We
call this the overlap effect. Potential-energy changes in the
overlap region are comparatively small.
The redistribution results in reduced density near each

nucleus, causing the second effect which is called promotion.
The reduced charge cloud is attracted to the nucleus more
strongly so that the effective atomic orbital shrinks in space.
We can model each effective atomic orbital by exp!!"r#.

For the hydrogen-molecule bond the decay constant " in-
creases from 1 in the bare-atom case to 1.193 in the molecu-
lar case. The kinetic energy is considerably increased and the
potential energy considerably decreased. These changes al-
most balance for the hydrogen molecule.
In comparison with two bare atoms at the molecular dis-

tance there is a net increase in kinetic energy due to the
competing effects of promotion and the overlap region. This
is outweighed by the decrease in potential energy due to
promotion. The decisive effect is the decrease in kinetic en-
ergy in the overlap region, since the effects of promotion on
the kinetic and potential energies almost cancel. The sym-
metric combination is a bonding orbital.
The energy arguments work exactly in reverse for the an-

tisymmetric combination. Charge is taken from the overlap
region and placed near the nuclei. The increased density gra-
dient causes an increase in kinetic energy, which is decisive
in the bonding consideration. The promotion effect is an ex-
pansion of the effective atomic orbitals, with the correspond-
ing decay constant being smaller than for bare atoms. The
antisymmetric combination is an antibonding orbital.
Bonding for p orbitals is different from that for s orbitals.

A p orbital has lobes of opposite sign on opposite sides of
the nucleus. Hence increased interference density in the
overlap region, resulting in a bonding molecular orbital, is
obtained by adding adjacent p orbitals with opposite signs.
The antisymmetric combination is the bonding orbital. We
show later that this difference results in different behavior of
s- and p-derived electronic states in ionic solids !see Fig. 5#.
There is another approach to the hydrogen molecule. As

we have seen before, the highest momentum density is near
the origin and corresponds to the part of the orbital in coor-
dinate space that is far away from the nucleus. At large dis-
tances one electron experiences the attractive potential of
two protons, rather close together and screened by the other
electron. Near the origin the momentum-space orbital there-
fore resembles that of a 1s electron in a helium atom.
To what extent is the momentum profile influenced by the

bonding? In Fig. 6 we show the absolute squares of calcu-
lated bonding and antibonding orbitals of the hydrogen mol-

Fig. 3. The experimental measurement of !$!q#!2 for the hydrogen atom.
The experiment was done using three different energies of the incoming

electrons, as indicated in the figure. All three experiments gave identical

momentum densities. The exact solution of the Schrödinger equation !solid
curve# fits the EMS data perfectly.

Fig. 4. The measured energy–momentum density of the valence levels of

argon gas. On the left we show it as a greyscale plot. There is significant

density for two different binding energies corresponding to the 3p and 3s

orbitals. Their completely different nature is evident from the fact that the

3s electrons have maximum density at zero momentum, whereas the 3p

electrons have minimum density at zero momentum !the density would be
zero for perfect momentum resolution#. In the right half we show a com-

parison of the measured momentum densities with ones obtained from SCF

calculations !broken curves# and after convolution with the experimental
momentum resolution !full curves#.

Fig. 5. The chemical bond derived from !a# s orbitals and !b# p orbitals. In
the case of s orbitals the bonding molecular orbital is formed if the orbital

on one atom is obtained from the orbital on the other atom by a simple

translation. For the p orbitals the bonding orbital is formed if the orbital on

one atom is obtained from the orbital on the other by a translation and

multiplication by !1.
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4

PT at moderately small PT for π+. The slope for π−

could be positive for moderate PT (ignoring the first data
point).
A possible interpretation of the PT -dependence of the

double-spin asymmetry may involve different widths of
the transverse momentum distributions of quarks with
different flavor and polarizations [45] resulting from dif-
ferent orbital motion of quarks polarized in the direc-
tion of the proton spin and opposite to it [46, 47]. In
Fig. 2 the measured A1 is compared with calculations
of the Torino group [45], which uses different values of
the ratio of widths in kT for partonic helicity, g1, and
momentum, f1, distributions, assuming Gaussian kT dis-
tributions with no flavor dependence. A fit to A1(PT )
for π+ using the same approach yields a ratio of widths
of 0.7± 0.1 with χ2 = 1.5. The fit to A1 with a straight
line (no difference in g1 and f1 widths) gives a χ2 = 1.9.
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FIG. 2: The double spin asymmetry A1 as a function of trans-
verse momentum PT , integrated over all kinematical vari-
ables. The open band corresponds to systematic uncertain-
ties. The dashed, dotted and dash-dotted curves are calcula-
tions for different values for the ratio of transverse momentum
widths for g1 and f1 (0.40, 0.68, 1.0) for a fixed width for f1
(0.25 GeV2) [45].

Asymmetries as a function of the azimuthal angle φ
provide access to different combinations of TMD parton
distribution and fragmentation functions [4]. The lon-
gitudinally polarized (L) target spin asymmetry for an
unpolarized beam (U),

AUL =
1

fPt

N+ −N−

N+ +N−
(3)

is measured from data by counting in φ-bins the differ-
ence of luminosity-normalized events with proton spin
states anti-parallel (N+) and parallel (N−) to the beam
direction.
The standard procedure for the extraction of the dif-

ferent moments involves sorting AUL in bins of φ and
fitting this φ-distribution with theoretically motivated
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FIG. 3: Azimuthal modulation of the target single spin asym-
metry AUL for pions integrated over the full kinematics. Only
statistical uncertainties are shown. Fit parameters p1/p2 are
0.047±0.010/−0.042±0.010, −0.046±0.016/−0.060±0.016,
0.059 ± 0.018/0.010 ± 0.019 for π+,π− and π0, respectively.
Dotted and dash-dotted lines for π+ show separately contri-
butions from sinφ and sin 2φ moments, whereas the solid line
shows the sum.

functions. Results for the function p1 sinφ + p2 sin 2φ
and, alternatively, for (p1 sinφ+ p2 sin 2φ)/(1 + p3 cosφ)
are consistent, indicating a weak dependence of the ex-
tracted sinnφ moments on the presence of the cosφ mo-
ment in the φ-dependence of the spin-independent sum.
The main sources of systematic uncertainties in the mea-
surements of single spin asymmetries include uncertain-
ties in target polarizations (6%), acceptance effects (8%),
and uncertainties in the dilution factor (5%). The con-
tribution due to differences between the true luminosity
for the two different target spin states is below 2%. Ra-
diative corrections for sinφ-type moments, for moderate
values of y are expected to be negligible [48].
The dependence of the target single spin asymmetry

on φ, integrated over all other kinematical variables, is
plotted in Fig. 3. We observe a significant sin 2φ mod-
ulation for π+ (0.042± 0.010). A relatively small sin 2φ
term in the azimuthal dependence for π0 is in agree-
ment with observations by HERMES [13]. Since the only
known contribution to the sin 2φ moments comes from
the Collins effect, one can infer that, for π0, the Collins
function is suppressed. Indeed, both HERMES [13] and
Belle [37] measurements indicate that favored and unfa-
vored Collins functions are roughly equal and have oppo-
site signs, which means that they largely cancel for π0.
On the other hand, the amplitudes of the sinφ modula-
tions for π+ and π0 are comparable in size. This indicates
that the contribution from the Collins effect to the sinφ
SSA, in general, is relatively small.
The sin 2φ moment Asin 2φ

UL as a function of x is plotted
in Fig. 4. Calculations [28, 34] using h⊥

1L from the chiral
quark soliton model [49] and the Collins function [50] ex-
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PT at moderately small PT for π+. The slope for π−

could be positive for moderate PT (ignoring the first data
point).
A possible interpretation of the PT -dependence of the

double-spin asymmetry may involve different widths of
the transverse momentum distributions of quarks with
different flavor and polarizations [45] resulting from dif-
ferent orbital motion of quarks polarized in the direc-
tion of the proton spin and opposite to it [46, 47]. In
Fig. 2 the measured A1 is compared with calculations
of the Torino group [45], which uses different values of
the ratio of widths in kT for partonic helicity, g1, and
momentum, f1, distributions, assuming Gaussian kT dis-
tributions with no flavor dependence. A fit to A1(PT )
for π+ using the same approach yields a ratio of widths
of 0.7± 0.1 with χ2 = 1.5. The fit to A1 with a straight
line (no difference in g1 and f1 widths) gives a χ2 = 1.9.
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FIG. 2: The double spin asymmetry A1 as a function of trans-
verse momentum PT , integrated over all kinematical vari-
ables. The open band corresponds to systematic uncertain-
ties. The dashed, dotted and dash-dotted curves are calcula-
tions for different values for the ratio of transverse momentum
widths for g1 and f1 (0.40, 0.68, 1.0) for a fixed width for f1
(0.25 GeV2) [45].

Asymmetries as a function of the azimuthal angle φ
provide access to different combinations of TMD parton
distribution and fragmentation functions [4]. The lon-
gitudinally polarized (L) target spin asymmetry for an
unpolarized beam (U),

AUL =
1

fPt

N+ −N−

N+ +N−
(3)

is measured from data by counting in φ-bins the differ-
ence of luminosity-normalized events with proton spin
states anti-parallel (N+) and parallel (N−) to the beam
direction.
The standard procedure for the extraction of the dif-

ferent moments involves sorting AUL in bins of φ and
fitting this φ-distribution with theoretically motivated
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FIG. 3: Azimuthal modulation of the target single spin asym-
metry AUL for pions integrated over the full kinematics. Only
statistical uncertainties are shown. Fit parameters p1/p2 are
0.047±0.010/−0.042±0.010, −0.046±0.016/−0.060±0.016,
0.059 ± 0.018/0.010 ± 0.019 for π+,π− and π0, respectively.
Dotted and dash-dotted lines for π+ show separately contri-
butions from sinφ and sin 2φ moments, whereas the solid line
shows the sum.
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on φ, integrated over all other kinematical variables, is
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ulation for π+ (0.042± 0.010). A relatively small sin 2φ
term in the azimuthal dependence for π0 is in agree-
ment with observations by HERMES [13]. Since the only
known contribution to the sin 2φ moments comes from
the Collins effect, one can infer that, for π0, the Collins
function is suppressed. Indeed, both HERMES [13] and
Belle [37] measurements indicate that favored and unfa-
vored Collins functions are roughly equal and have oppo-
site signs, which means that they largely cancel for π0.
On the other hand, the amplitudes of the sinφ modula-
tions for π+ and π0 are comparable in size. This indicates
that the contribution from the Collins effect to the sinφ
SSA, in general, is relatively small.
The sin 2φ moment Asin 2φ

UL as a function of x is plotted
in Fig. 4. Calculations [28, 34] using h⊥

1L from the chiral
quark soliton model [49] and the Collins function [50] ex-

CLAS, arXiv:1003.4549
talk by Patrizia Rossi

Non-flat behavior means that polarization affects TMDs

Thursday, 3 June 2010



4

PT at moderately small PT for π+. The slope for π−

could be positive for moderate PT (ignoring the first data
point).
A possible interpretation of the PT -dependence of the

double-spin asymmetry may involve different widths of
the transverse momentum distributions of quarks with
different flavor and polarizations [45] resulting from dif-
ferent orbital motion of quarks polarized in the direc-
tion of the proton spin and opposite to it [46, 47]. In
Fig. 2 the measured A1 is compared with calculations
of the Torino group [45], which uses different values of
the ratio of widths in kT for partonic helicity, g1, and
momentum, f1, distributions, assuming Gaussian kT dis-
tributions with no flavor dependence. A fit to A1(PT )
for π+ using the same approach yields a ratio of widths
of 0.7± 0.1 with χ2 = 1.5. The fit to A1 with a straight
line (no difference in g1 and f1 widths) gives a χ2 = 1.9.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1

!
+A

1

0 0.5 1

!
-

PT (GeV)

0 0.5 1

!
0

FIG. 2: The double spin asymmetry A1 as a function of trans-
verse momentum PT , integrated over all kinematical vari-
ables. The open band corresponds to systematic uncertain-
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widths for g1 and f1 (0.40, 0.68, 1.0) for a fixed width for f1
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functions. Results for the function p1 sinφ + p2 sin 2φ
and, alternatively, for (p1 sinφ+ p2 sin 2φ)/(1 + p3 cosφ)
are consistent, indicating a weak dependence of the ex-
tracted sinnφ moments on the presence of the cosφ mo-
ment in the φ-dependence of the spin-independent sum.
The main sources of systematic uncertainties in the mea-
surements of single spin asymmetries include uncertain-
ties in target polarizations (6%), acceptance effects (8%),
and uncertainties in the dilution factor (5%). The con-
tribution due to differences between the true luminosity
for the two different target spin states is below 2%. Ra-
diative corrections for sinφ-type moments, for moderate
values of y are expected to be negligible [48].
The dependence of the target single spin asymmetry

on φ, integrated over all other kinematical variables, is
plotted in Fig. 3. We observe a significant sin 2φ mod-
ulation for π+ (0.042± 0.010). A relatively small sin 2φ
term in the azimuthal dependence for π0 is in agree-
ment with observations by HERMES [13]. Since the only
known contribution to the sin 2φ moments comes from
the Collins effect, one can infer that, for π0, the Collins
function is suppressed. Indeed, both HERMES [13] and
Belle [37] measurements indicate that favored and unfa-
vored Collins functions are roughly equal and have oppo-
site signs, which means that they largely cancel for π0.
On the other hand, the amplitudes of the sinφ modula-
tions for π+ and π0 are comparable in size. This indicates
that the contribution from the Collins effect to the sinφ
SSA, in general, is relatively small.
The sin 2φ moment Asin 2φ

UL as a function of x is plotted
in Fig. 4. Calculations [28, 34] using h⊥

1L from the chiral
quark soliton model [49] and the Collins function [50] ex-
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g1Tandh⊥
1L

g1TmultipliesλSikiinTMD(λ=quarkhelicity):

↪→distributionoflongitudinallypolarizedquarksin⊥polarized
nucleon!

h⊥
1LmultipliesΛsiki(Λ=nucleonlong.pol.)

↪→distributionofquarktransversityinlongitudinallypolarized
nucleon!

in‘restframe’(i.e.withγ+→γ0),bothwouldvanishbyrotational
invariance

canbegeneratedbyaboosttotheIMF‘Meloshrotation’,e.g.
quarkswith⊥momentumandpolarizationacquirelong.

polarizationcomponentafterboosttoIMF(compareThomas
precession)

WhatcanwelearnfromTMDs?–p.34/58

Reminiscent of 
a worm gear

⦿

Transverse-longitudinal spin
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Transverse-longitudinal spin
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Worm gears on the lattice

g1Tandh⊥
1L

g1TmultipliesλSikiinTMD(λ=quarkhelicity):

↪→distributionoflongitudinallypolarizedquarksin⊥polarized
nucleon!

h⊥
1LmultipliesΛsiki(Λ=nucleonlong.pol.)

↪→distributionofquarktransversityinlongitudinallypolarized
nucleon!

in‘restframe’(i.e.withγ+→γ0),bothwouldvanishbyrotational
invariance

canbegeneratedbyaboosttotheIMF‘Meloshrotation’,e.g.
quarkswith⊥momentumandpolarizationacquirelong.

polarizationcomponentafterboosttoIMF(compareThomas
precession)

WhatcanwelearnfromTMDs?–p.34/58

Talk by Bernhard Musch
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Worm gear signal in experiments
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We have achieved a lot.
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We have achieved a lot.
We have a lot to achieve.
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